Text classification: A least square support vector machine approach
نویسندگان
چکیده
This paper presents a least square support vector machine (LS-SVM) that performs text classification of noisy document titles according to different predetermined categories. The system’s potential is demonstrated with a corpus of 91,229 words from University of Denver’s Penrose Library catalogue. The classification accuracy of the proposed LS-SVM based system is found to be over 99.9%. The final classifier is an LS-SVM array with Gaussian radial basis function (GRBF) kernel, which uses the coefficients generated by the latent semantic indexing algorithm for classification of the text titles. These coefficients are also used to generate the confidence factors for the inference engine that present the final decision of the entire classifier. The system is also compared with a K-nearest neighbor (KNN) and Naı̈ve Bayes (NB) classifier and the comparison clearly claims that the proposed LS-SVM based architecture outperforms the KNN and NB based system. The comparison between the conventional linear SVM based classifiers and neural network based classifying agents shows that the LS-SVM with LSI based classifying agents improves text categorization performance significantly and holds a lot of potential for developing robust learning based agents for text classification. # 2006 Elsevier B.V. All rights reserved.
منابع مشابه
A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملApplication of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملHybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine
In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...
متن کاملModeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کاملSustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm
For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 7 شماره
صفحات -
تاریخ انتشار 2007